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The objective of this article is to test whether or not there is an abrupt change in the regression function itself or in its
first derivative at certain (prespecified or not) locations. The test does not rely on asymptotics but approximates the
sample distribution of the test statistic using a bootstrap procedure. The proposed testing method involves a data-driven
choice of the smoothing parameters. The performance of the testing procedures is evaluated via a simulation study.
Some comparison with an asymptotic test by Hamrouni (1999) and Grégoire and Hamrouni (2002b) and asymptotic
tests by Müller and Stadtmüller (1999) and Dubowik and Stadtmüller (2000) is provided. We also demonstrate the
use of the testing procedures on some real data.
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1 INTRODUCTION

In many applications, it may appear that a regression function is smooth except at an
unknown finite number of points where jump discontinuities may occur. Examples are the
Nile data (Cobb, 1978), the Mine accident data (Jarrett, 1979), the penny thickness data (see
e.g. Scott, 1992) and the Prague temperature data (see Horváth and Kokoszka, 1997). Moreover,
the regression function might be smooth (continuous) but its derivative might show a jump
discontinuity.An example here is the Motorcycle data set (see e.g. Härdle, 1990) where changes
in the ‘direction’ of the acceleration variable (vs. time after impact) are ‘suspected’ and to be
tested for. This example involves testing for a jump discontinuity in the first derivative. We
will illustrate the testing procedures developed in this article on some of these data sets.

If jump discontinuities are present in an otherwise smooth regression function or its deriva-
tive, their locations can be estimated followed by the estimation of the unsmooth curve (or
derivative curve). The literature on estimation of locations of such change-points is by now quite
large. Kernel-based estimation methods have been studied by Hall and Titterington (1992),
Müller (1992), Wu and Chu (1993a, b, c), Chu (1994), Speckman (1994) and Eubank and
Speckman (1994), among others. Speckman (1995) and Cline, et al. (1995) studied fitting
curves with features using semiparametric change-point methods. Local polynomial methods
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were used by McDonald and Owen (1986), Loader (1996), Horváth and Kokoszka (1997,
2002), Qiu and Yandell (1998), Spokoiny (1998) and Hamrouni (1999) and Grégoire and
Hamrouni (2002a), among others. For wavelet-based methods see, for example, Wang (1995),
Raimondo (1998) and Antoniadis and Gijbels (2002). Müller and Song (1997) and Gijbels
et al. (1999, 2003) proposed two-step estimation procedures. Gijbels and Goderniaux (2004a, b)
discussed practical choices of the bandwidth parameters in the two-step procedure of Gijbels
et al. (1999).

When estimating curves one often makes the assumption that the curve is smooth (i.e. at least
continuous), leading to a smooth estimate. If such an assumption is doubted one would estimate
first the change-points and then adapt the estimated regression curve to the estimated change-
points. This unsmooth estimate usually appears quite different from the smooth estimate. See,
for example, Müller and Stadtmüller (1999) for several plots illustrating this point. Hence, an
important issue when estimating a regression function is to know whether it is reasonable to
assume that the regression function (and/or its derivative(s)) is (are) smooth. This calls for
testing the null hypothesis of a smooth regression function.

In this article, we discuss a bootstrap procedure for this testing problem, which does not
rely on asymptotic laws. This is in contrast with testing procedures available in the literature
which rely on asymptotic distributions of the estimators involved. References dealing with tests
based on asymptotic laws include Wu and Chu (1993a, b, c), Hamrouni (1999), Müller and
Stadtmüller (1999), Dubowik and Stadtmüller (2000) and Gregoire and Hamrouni (2002b).
The bootstrap testing procedure presented in this article uses the two-step estimation method
of Gijbels et al. (1999) as a starting basis. The reasons for this choice are: the method achieves
the optimal rate of convergence, it has a good finite sample performance (as has been shown by
extensive simulation studies) and data-driven choices of the parameters have been studied (i.e.
the method is fully data-driven). As a consequence, the bootstrap testing procedures are also
fully data-driven, not leaving the reader with a difficult and crucial choice of some smoothing
parameters.

Following Hamrouni (1999) and Grégoire and Hamrouni (2002b) we discuss two tests: a
local test and a global test. The local test focuses on testing whether the regression function (or
its derivative) has a jump discontinuity at a certain fixed (prespecified) point x0. Therefore, the
local test relies on available information on the location of a possible jump discontinuity. With
the global test we test the (more general) null hypothesis of a smooth curve vs. the alternative
of a curve with at least one jump discontinuity (at an unknown point). We provide bootstrap
testing procedures for both testing problems, and this for testing for discontinuities in the
regression function itself or in its first derivative. Here, the procedures presented can be easily
generalized for testing for jump discontinuities in the higher order derivatives of the regression
function but for clarity of presentation we restrict ourselves to the first-order derivative. See
Gijbels and Goderniaux (2004b) for ideas about basic adaptations to the case of higher order
derivative curves.

The article is organized as follows. In Section 2, we focus on the bootstrap tests for the regres-
sion function itself, whereas in Section 3, we describe how to extend the procedures to obtain
bootstrap tests for the testing problem involving the first derivative of the regression curve.
Section 4 prepares for a comparison of the proposed bootstrap tests with some available asymp-
totic tests, such as those provided by Hamrouni (1999) and Grégoire and Hamrouni (2002b) and
by Müller and Stadtmüller (1999) and Dubowik and Stadtmüller (2000). A simulation study,
presented in Section 5, illustrates the performances of the bootstrap-based tests and compares
them with the performances of the asymptotic tests. In that section, we also demonstrate the
use of the bootstrap tests on some real data.
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2 BOOTSTRAP TESTING PROCEDURES

2.1 Statistical Model

We assume that a sample of n data pairs X = {(X1, Y1), . . . , (Xn, Yn)} is observed, generated
from the model

Yi = g(Xi) + εi , 1 ≤ i ≤ n. (1)

The design points Xi are either regularly spaced on I = [0, 1] or are the order statistics of
a random sample from a distribution having a density f supported on I . The errors εi are
independent and identically distributed with zero mean and finite variance. The function g is
unknown and is assumed to be smooth (i.e. continuous) except at a finite (unknown) number
of points.

2.2 The Local Test

2.2.1 The Testing Problem

Let x0 be a fixed prespecified point in the interval ]0, 1[. Then the interest is to test

H0: g is continuous in the point x0

vs. H1: g has a jump discontinuity at the point x0.

More formally, consider the testing problem

{
H0: g(x−

0 ) = g(x+
0 )

H1: g(x−
0 ) �= g(x+

0 ),
(2)

where g(x+
0 ) = limt↓x0 g(t) and g(x−

0 ) = limt↑x0 g(t) denote the right-hand limit, and the
left-hand limit respectively, of the function g at the point x0.

Therefore, here we know in advance where the possible discontinuity could be located
(namely at the point x0) and we want to test whether there is indeed a jump occurring at this
point or not. In other words, we want to test if the size of the jump at x0 is significantly different
from zero or not. Since the location x0 is known, we estimate the unknown regression function
g in model (1) by

ĝUS(x) =
{

ĝ1(x) if x ∈ [0, x0]

ĝ2(x) if x ∈ ]x0, 1],
(3)

where ĝ1 and ĝ2 are nonparametric estimates of g on the interval [0, x0] and ]x0, 1], res-
pectively. The subscript US in ĝUS(·) refers to the fact that the resulting estimator is possibly
unsmooth at the point x0. We choose to work with kernel-type regression estimators, such as
for example the Nadaraya–Watson estimator (see Nadaraya, 1964; Watson, 1964) or the local
linear estimator (see Fan and Gijbels, 1996). Such estimators require the choice of a kernel
function K as well as a bandwidth parameter. The nonparametric estimator ĝ�, involves a
global smoothing parameter h�, � = 1, 2. For simplicity we restrict to the case h1 = h2 = h.
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One could think of several approaches for choosing the smoothing parameter h in a data-
driven way. A cross-validation procedure for choosing h consists of minimizing the cross-
validation quantity

CV(h) =
i0∑

i=1

{ĝ−i
1 (Xi ; h) − Yi }2 +

n∑
i=i0+1

{ĝ−i
2 (Xi ; h) − Yi }2, (4)

with i0 = max{i : Xi ≤ x0}, and where ĝ−i
1 (·) and ĝ−i

2 (·) denote the estimators ĝ1 and ĝ2

obtained by discarding the i th data point, on the interval [0, x0] and ]x0, 1], respectively. The
cross-validated bandwidth selector is then defined as

ĥCV = arg min
h

CV(h). (5)

A cross-validation procedure for selecting two possibly different smoothing parameters h1 and
h2 would be as follows:

ĥ1,CV = arg min
h1

i0∑
i=1

{ĝ−i
1 (Xi ; h1) − Yi }2

ĥ2,CV = arg min
h2

n∑
i=i0+1

{ĝ−i
2 (Xi ; h2) − Yi }2.

Define by γ , the jump size at the possible jump point x0, i.e.

γ = g(x+
0 ) − g(x−

0 ).

Testing problem (2) is then equivalent to

{
H0: γ = 0

H1: γ �= 0.

We consider the test statistic

T = γ̂ = ĝ2(x+
0 ) − ĝ1(x0), (6)

with ĝ1 and ĝ2 as in Eq. (3). The null hypothesis is rejected if we obtain a value for |T | that is
too large. Denoting by Tobs the observed value of the test statistic, we would conclude that the
size of the jump at x0 is significantly different from zero if

Tobs > c1

(α

2

)
or Tobs < c2

(α

2

)
,

where c1(α/2) and c2(α/2) are the two α/2-critical levels of the distribution of T , i.e.

c1

(α

2

)
= inf

{
x : PH0{T ≤ x} ≥ 1 − α

2

}
and c2

(α

2

)
= sup

{
x : PH0{T ≤ x} ≤ α

2

}
.
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In order to determine these critical points, we must know the distribution of the statistic T
under H0. But this distribution is unknown and we propose to use a bootstrap procedure to
approximate these two critical points.

2.2.2 The Bootstrap Procedure

There are two important aspects in the bootstrap procedure. Firstly, we need to resample
from the residuals εi = Yi − g(Xi), and for this we wish to mimic the ‘true’ εs as closely
as possible. Best estimation of these εs is obtained via ‘best’ estimation of g itself. Since
εi = Yi − g(Xi), with Yi known, ‘best’ estimation of εi reduces to ‘best’ estimation of g itself.
More precisely, choosing ε̂1, . . . , ε̂n to minimize

∑
(ε̂i − εi)

2 is equivalent to choosing ĝ to
minimize

∑{ĝ(Xi ) − g(Xi)}2. Using ĝUS, defined in Eq. (3) to calculate the residuals seems
to be a reasonable option. In case H0 is not true, this is the option to choose, and even if H0

is true the estimate ĝUS will still provide a consistent estimate of g. Second, to approximate
the distribution of the test statistic T we wish to mimic the data-generating mechanism under
the null hypothesis of continuity of g. Hence, in the bootstrapping stage below (see Step 2)
we use an estimator ĝS of g, based on the data (X1, Y1), . . . , (Xn, Yn), obtained under the
assumption that g is a smooth function having no discontinuities (i.e. γ = 0). We opt here for
using ĝS(·; ĥS,CV), the local linear regression estimator with a cross-validated bandwidth ĥS,CV

obtained via ĥS,CV = arg minh
∑n

i=1{ĝ−i
S (Xi; h) − Yi}2.

For fixed design, the bootstrap procedure for assessing the critical points then reads as
follows.

Step 1 Computation of residuals
Calculate the estimated residuals

ε̃i = Yi − ĝUS(Xi ; ĥCV),

with ĥCV as in Eq. (5). Let ε̄ denote the mean of all ε̃i s, and put ε̂i = ε̃i − ε̄.

Step 2 Monte Carlo simulation
Obtain ε∗

1, . . . , ε
∗
n by resampling with replacement from ε̂1, . . . , ε̂n . Obtain

Y ∗
i = ĝS(Xi; ĥS,CV) + ε∗

i , i = 1, . . . , n,

and get

T ∗ = ĝ∗
2(x+

0 ) − ĝ∗
1(x0), (7)

where ĝ∗
1(·) and ĝ∗

2(·) are nonparametric estimates of g on the intervals [0, x0] and ]x0, 1],
respectively, using the bootstrap sample X ∗ = {(X1, Y ∗

1 ), . . . , (Xn, Y ∗
n )}. To choose the band-

widths involved we use the cross-validation procedure (4).

Step 3 Determination of the bootstrap critical points
Repeat Step 2 a large number of times, say B times, and approximate the critical points

c1(α/2) and c2(α/2) by the smallest value c∗
1(α/2) and the largest value c∗

2(α/2) such that

#
{
b = 1, . . . , B: T ∗

b ≤ c∗
1(α/2)

}
B

≥ 1 − α

2

#
{
b = 1, . . . , B: T ∗

b ≤ c∗
2(α/2)

}
B

≤ α

2
.
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Bowman et al. (1998) considered, in the context of testing for monotonicity of a regression
function, a bootstrapping procedure similar in nature to the above. For some discussion of
this and similar bootstrap procedures, in the context of bump hunting for regression, see also
Harezlak (1998) and Harezlak and Heckman (2001).

Finally, the bootstrap test consists of rejecting H0 if

Tobs > c∗
1

(α

2

)
or Tobs < c∗

2

(α

2

)
.

In case of random design, the above bootstrap algorithm needs to be adjusted accordingly.
This adjustment consists of also resampling from the design points X1, . . . , Xn using smoothed
bootstrap, and obtaining as such a bootstrap sample X = {(X∗

1, Y ∗
1 ), . . . , (X∗

n, Y ∗
n )}.

In Section 5.2 we compare, via simulations, the performance of this bootstrap test with the
performance of an asymptotic test developed by Gregoire and Hamrouni (2002b).

2.3 The Global Test

2.3.1 The Testing Problem

Here we want to test whether the unknown regression function has at least one jump disconti-
nuity or not. We do not specify in advance where a jump discontinuity might occur. Therefore,
this situation is more appropriate when we have no idea in advance about the location of a
possible jump discontinuity. On the basis of the observations {(X1, Y1), . . . , (Xn, Yn)}, we
wish to test the null hypothesis{

H0: g is continuous on the interval ]0, 1[

H1: g is discontinuous in at least one point on the interval ]0, 1[

or, more formally {
H0: ∀x0 ∈ ]0, 1[: g(x−

0 ) = g(x+
0 )

H1: ∃x0 ∈ ]0, 1[ such that g(x−
0 ) �= g(x+

0 ).
(8)

Note that the alternative hypothesis states that there is a discontinuity point at a point x0, but
there might be more than one jump discontinuity.

2.3.2 Bootstrap Algorithm and Testing Procedure

For this more general testing problem we use the test statistic

T = γ̂ = ĝ2(x̂+
0 ) − ĝ1(x̂0),

which is similar to the test statistic defined in Eq. (6), but with the unknown x0 replaced by the
estimator x̂0, assuming that there is (at least) one jump discontinuity. We use the data-driven
bootstrap method developed by Gijbels and Goderniaux (2004a) for estimating x0. This method
is based on a two-step estimation procedure introduced and studied by Gijbels et al. (1999,
2003), and consists of obtaining a preliminary estimator of x0 defined as the location where a
derivative estimate of g achieves its maximum in absolute value. A refinement of this estimator
is then obtained via least-squares fitting of a piecewise constant (or polynomial) function in a
neighbourhood of the preliminary estimator.

Therefore, in order to calculate the statistic T , we first need to get x̂0 (via the data-driven
two-step procedure) and then calculate the statistic T . The calculation of the bootstrapped
version of T also consists of these two stages: determination of the location of the possible
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jump discontinuity, followed by the estimation of the jump size at that location. This results
into a bootstrap algorithm, similarly as before but now with Eq. (7) replaced by

T ∗ = ĝ∗
2(x̂∗+

0 ) − ĝ∗
1(x̂∗

0 ),

where x̂∗
0 is the estimated location of the possible jump (the most important one) using the

bootstrap sample.
In Section 5, we evaluate the performance of this global test via simulations for functions

having one or two discontinuities and for fixed or random design.

3 GENERALIZATION FOR TESTING FOR DISCONTINUITIES
IN DERIVATIVES

In this section, we show how to generalize the local and global tests for testing for discontinuities
in the first derivative of the regression function. The generalization for testing for discontin-
uities in the kth derivative function (k > 1) is similar in spirit and is not presented here.

We continue to consider model (1) but we now assume that the function g is continuous
and its first derivative is continuous except at some finite (unknown) number of points.

3.1 The Local Test

For the local test we are interested in the testing problem{
H0: g(1)(x−

0 ) = g(1)(x+
0 )

H1: g(1)(x−
0 ) �= g(1)(x+

0 ),

where g(1)(x+
0 ) = limt↓x0 g(1)(t) and g(1)(x−

0 ) = limt↑x0 g(1)(t) denote the left-hand side limit
and the right-hand side limit, respectively, of the first derivative of g at the point x0. In other
words, we want to test if the first derivative g(1) of the regression function is continuous or not
at a prespecified point x0. This is equivalent to testing whether the size of the jump at x0 in the
first derivative is significantly different from zero or not.

Since the location x0 is known we estimate the first derivative of the regression function
g(1) in the model Yi = g(Xi) + εi , by

ĝ(1)
US(x) =


ĝ(1)

1 (x) if x ∈ [0, x0]

ĝ(1)
2 (x) if x ∈ ]x0, 1],

where ĝ(1)
1 (·) and ĝ(1)

2 (·) are local linear estimates of g(1), the first derivative of the regression
function g on the interval [0, x0] and ]x0, 1], respectively.

For choosing the bandwidth parameter in ĝ(1)
US we use the cross-validation technique adapted

for the estimation of a derivative proposed by Müller et al. (1987):

CV(1)(h) =
i0−1∑
i=1

{
Yi+1 − Yi

Xi+1 − Xi
− ĝ(1),−(i,i+1)

1 (X (1)
i , h)

}2

+
n−1∑
i=i0

{
Yi+1 − Yi

Xi+1 − Xi
− ĝ(1),−(i,i+1)

2 (X (1)
i , h)

}2

,

with i0 = max{i : Xi ≤ x0} and X (1)

i = (Xi+1 + Xi)/2, and where ĝ(1),−(i,i+1)
1 and ĝ(1),−(i,i+1)

2

denote the estimates ĝ(1)
1 and ĝ(1)

2 obtained by discarding the i th and (i + 1)th data points,
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on the interval [0, x0] and ]x0, 1], respectively. The cross-validated bandwidth selector is
then defined as ĥCV = arg minh CV(1)(h). Similarly as before, a cross-validation procedure
for selecting two separate smoothing parameters h1 and h2 would be as follows:

ĥ1,CV = arg min
h1

i0−1∑
i=1

{
Yi+1 − Yi

Xi+1 − Xi
− ĝ(1),−(i,i+1)

1 (X (1)
i ; h1)

}2

ĥ2,CV = arg min
h2

n−1∑
i=i0+1

{
Yi+1 − Yi

Xi+1 − Xi
− ĝ(1),−(i,i+1)

2 (X (1)
i ; h2)

}2

.

As a test statistic we take the estimated jump size (in the first derivative) at the point x0:

T1 = γ̂1 = ĝ(1)
2 (x+

0 ) − ĝ(1)
1 (x0), (9)

and reject the null hypothesis if the observed value of |T1| is too large. Approximated critical
points of the test are obtained via a bootstrap procedure similar as the one presented in Section 2,
but now with Eq. (7) replaced by

T ∗
1 = ĝ(1)∗

2 (x+
0 ) − ĝ(1)∗

1 (x0). (10)

3.2 The Global Test

For the global test we are interested in the testing problem

{
H0: ∀x0 ∈ ]0, 1[: g(1)(x−

0 ) = g(1)(x+
0 )

H1: ∃x0 ∈ ]0, 1[ such that g(1)(x−
0 ) �= g(x+

0 ).

As a test statistic we use

T1 = γ̂1 = ĝ(1)
2 (x̂+

0 ) − ĝ(1)
1 (x̂0),

as defined in Eq. (9), but with x0 replaced by an estimator x̂0. For this estimator we rely on
the data-driven bootstrap method developed by Gijbels and Goderniaux (2004b), which in
fact generalizes the method discussed in Gijbels and Goderniaux (2004a) for the regression
function itself. In order to find approximated values, c∗

1(α/2) and c∗
2(α/2), of the two critical

points of the test, we apply a bootstrap algorithm, similar to the one used for the local test but
with Eq. (10) replaced by

T ∗
1 = ĝ(1)∗

2 (x̂∗+
0 ) − ĝ(1)∗

1 (x̂∗
0 ),

where x̂∗
0 is the estimated location of the (possible) jump point occurring in the first derivative

of the regression function based on the bootstrap sample. Note also that Step 1 of the boot-
strap procedure is changed accordingly, since it now requires estimation of the unknown x0

(estimated by x̂0) before the actual estimation of ĝUS is done as indicated in Eq. (3).

4 ASYMPTOTIC TESTS

In Section 5, we provide some comparison of the bootstrap procedure proposed in Section 2
for testing for a continuous regression function vs. a noncontinuous regression function, with
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some asymptotic tests available in the literature. We consider the asymptotic tests suggested by
Hamrouni (1999) and Grégoire and Hamrouni (2002b) and the testing procedures discussed
in Müller and Stadtmüller (1999) and Dubowik and Stadtmüller (2000). The last two papers
focused on a quantity κ , ‘the amount of discontinuity’, which is defined as the sum of squared
jump sizes at all jump points of the regression function, and proposed tests for testing H0: κ = 0
vs. H1: κ > 0. We now briefly describe these asymptotic testing procedures.

4.1 Test of Grégoire and Hamrouni

Hamrouni (1999) and Grégoire and Hamrouni (2002a, b) used local linear estimation for
estimating a jump point x0, and search for the location point t for which the absolute difference
between a right-hand estimate and a left-hand estimate of g is maximal. More precisely, they
consider

x̂0 = arg supt |ĝ+(t) − ĝ−(t)|,

where ĝ−(·) and ĝ+(·) are local linear estimates of left-hand and right-hand limits of g. The
jump size γ (γ > 0) at the point x0 is then estimated by supt |ĝ+(t) − ĝ−(t)|. Hamrouni (1999)
established the asymptotic distribution for the statistic supt |ĝ+(t) − ĝ−(t)|. For the global
testing problem, Hamrouni (1999) proposes a test that consists of rejecting H0: ‘g is continuous
on the interval ]0, 1[’ when the observed value of supt |ĝ+(t) − ĝ−(t)| is too large. The critical
points for this test are based on the asymptotic law of supt |ĝ+(t) − ĝ−(t)|.

When the location x0 of the jump point is known Hamrouni (1999) and Grégoire and
Hamrouni (2002a, b) estimated the jump size at x0 by ĝ+(x0) − ĝ−(x0). For the local testing
problem, Grégoire and Hamrouni (2002b) proposed two testing procedures, one based on the
simple statistic ĝ+(x0) − ĝ−(x0), and a second test based on a test statistic that takes into
account the behaviour of γ̂ (t) = ĝ+(t) − ĝ−(t) in a neighbourhood around x0. Both testing
procedures rely on the asymptotic distribution theory for the considered random quantities.

In Section 5, we provide some comparison of the performance of our bootstrap test with
the performance of the strictly local test of Grégoire and Hamrouni (2002b) relying on the
asymptotic law of ĝ+(x0) − ĝ−(x0), and with the global test developed in Hamrouni (1999).

4.2 Tests of Dubowik, Müller and Stadtmüller

Müller and Stadtmüller (1999) and Dubowik and Stadtmüller (2000) assumed that the data are
generated from a fixed design regression model where the errors are i.i.d. with zero mean, finite
variance σ 2 and finite fourth moment. The regression function is smooth except for an unknown
number of jump points. The article focuses on estimating simultaneously the quantities σ 2, the
error variance, and κ , the sum of squared jump sizes, and to test the null hypothesis H0: κ = 0
(g is continuous) vs. H ′

1: κ > 0 (g is discontinuous). The testing procedure is based on sums
of squared differences of the data, formed with various span sizes:

Zk =
n−L∑
j=1

(yj+k − yj)
2

n − L
1 ≤ k ≤ L

where L = L(n) ≥ 1 is a sequence of integers depending on n. Müller and Stadtmüller (1999)
showed that the statistics Zk can be interpreted as dependent variables within the following
three-parameter asymptotic linear model which contains the parameters of interest σ 2, κ and
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δ, a parameter measuring the ‘interaction’ between the continuous and discontinuous part of
the regression function:

Zk = 2σ 2 + k

n − L
κ +

(
k

n − L

)2

δ + η̃k 1 ≤ k ≤ L,

with η̃k the error term.
Estimators for σ 2 and κ are derived using least-squares and the asymptotic distribution

for these estimators is established. This then is used to construct an asymptotic level α test
for the null hypothesis of no change in the regression function. For more details about this
procedure see Müller and Stadtmüller (1999). They also discuss fitting of the Zk via a simpler
two-parameter (linear) model

Zk = 2σ 2 + k

n − L
κ + ηk 1 ≤ k ≤ L .

From the simulation study provided in their paper they recommend using the three param-
eter linear model instead of the above simpler two parameter linear model. Dubowik and
Stadtmüller (2000) proposed an improvement of the testing procedure based on the simpler
linear model by symmetrizing the quantities Zk . A similar improvement could probably be
proposed when using the three-parameter linear model, provided the asymptotic distribution
for the resulting estimators will be established.

5 SIMULATION STUDIES AND REAL DATA EXAMPLES

We now evaluate the finite sample performance of the proposed bootstrap testing procedures
for the local and global testing problems. In Sections 5.1 and 5.2, we focus on tests for the
regression function itself, whereas in Section 5.3 we illustrate the performance for the testing
problem regarding the first derivative of the regression function. In Section 5.2, we com-
pare the performances of the bootstrap-based test with the asymptotic (local and global) tests
of Hamrouni (1999) and Grégoire and Hamrouni (2002b) on one hand and the asymptotic
tests of Müller and Stadtmüller (1999) and Dubowik and Stadtmüller (2000) on the other
hand. Throughout the simulation study we took normally distributed errors with error variance
σ 2. In Section 5.4, we apply the bootstrap test on the Prague temperature data and on the
Motorcycle data.

5.1 Test for the Regression Function Itself

We consider five different models:

g1(x) = 4x2 + I (x > 0.5)

g2(x) = cos{8π(0.5 − x)} − 2 cos{(8π(0.5 − x)}I (x > 0.5)

g3(x) = 4x2

g4(x) = cos{8π(0.5 − x)}
g5(x) = 4x2 + 1.2I (x > 0.2) + 0.8I (x > 0.5),

where I (A) denotes the indicator function of the event A, i.e. I (A) = 1 if A is true and zero
otherwise. Figure 1 depicts these functions (as solid curves) together with a typical simulated
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FIGURE 1 The true regression functions (solid curves) with a typical simulated data set of size n = 100 and variance
σ 2 = 0.5. Regression functions: (a) g1; (b) g2; (c) g3; (d) g4 and (e) g5.

dataset of size n = 100 for σ 2 = 0.5. The functions g1 and g2 have a jump at 0.5. The functions
g3 and g4 are ‘smooth’ versions of g1 and g2, respectively. The function g5, another ‘discon-
tinuous version’ of the quadratic function g3, has two discontinuity points occurring at 0.2
and 0.5.

5.1.1 Local Testing Problem

To study the performance of the bootstrap test for the local testing problem

{
H0: the function is continuous at the point 0.5

H1: the function has a jump discontinuity at the point 0.5,

we consider the models g1, g2, g3 and g4. We simulated samples of sizes n = 50, n = 100,
n = 250 and n = 800 and took two different values of the error variance σ 2 = 0.1 and
σ 2 = 0.5. We considered fixed equidistant design, xi = i/n for i = 1, . . . , n and we also
dealt with random design, Xi ∼ U([0, 1]) for the function g1. For each setup we obtained 100
simulations and used B = 2000 bootstrap replications for the estimation of the two critical
points of the test. The significance level is α = 0.05. In Table I, we report on the proportion
of times that the null hypothesis is rejected.

The functions g1 and g2 have a single jump discontinuity of size 1 and −2, respectively,
at the point x0 = 0.5. So the first two rows of Table I represent the proportion of times that
H0 was rejected when H0 is false. Note that this proportion tends to one when n increases,
for σ 2 = 0.1 as well as for a bigger error variance σ 2 = 0.5. A similar result is seen for
the function g1 with random design (see the last row in Tab. I). These three rows illustrate the
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TABLE I Results for the local test for the four different functions: the proportion of times H0
was rejected.

n = 50 n = 100 n = 250 n = 800

g1 σ 2 = 0.1 0.91 1 1 1
Fixed design σ 2 = 0.5 0.33 0.54 0.89 0.98
g2 σ 2 = 0.1 0.95 1 1 1
Fixed design σ 2 = 0.5 0.53 0.76 0.95 1
g3 σ 2 = 0.1 0.09 0.09 0.06 0.03
Fixed design σ 2 = 0.5 0.07 0.08 0.06 0.03
g4 σ 2 = 0.1 0.06 0.07 0.05 0.04
Fixed design σ 2 = 0.5 0.06 0.06 0.09 0.04
g1 σ 2 = 0.1 0.64 0.94 0.99 1
Random design σ 2 = 0.5 0.27 0.67 0.89 1

power properties of the bootstrap local test. The rows for the continuous functions g3 and g4

in Table I give an idea about the actual level of the bootstrap test.

5.1.2 Global Testing Problem

We now present some simulation results on the global testing problem (8). We consider the
functions g1, g2, g3, g4 and g5. We simulated samples of size n = 100 and used B = 500
bootstrap replications for each estimation of the jump point and B = 500 bootstrap replications
for estimating the two critical points of the test. Some results are presented in Table II that list
the proportion of times (out of 100 simulations) that the null hypothesis was rejected.

Note from Table II that the results for the function g1 are quite good. The results for
the function g2 are not so good as for the function g1. This is simply because the function
g2 represents a more difficult case since it is essentially a cosinus function, showing many
fluctuations. A typical difficulty inherent to this type of examples is the problem of identifying
the jump point and distinguishing it from points with high absolute derivatives (points of steep
increase or decrease). The results for the continuous functions g3 and g4 illustrate the actual
level of the global test.

For the function g5, the quadratic function with two discontinuities, the simulations for
sample size n = 100 and σ 2 = 0.1 resulted into a proportion of rejection of H0 (while H0 is
false) of 0.98. The algorithm more easily detected the discontinuity at the point 0.2. This is not
surprising since the jump size at 0.2 is larger than that at 0.5. We also obtained good results for
the function g1 with n = 100 and σ 2 = 0.1 for random design Xi ∼ U([0, 1]). In this setup,
the percentage of rejection of H0 was 78%.

TABLE II Results for the global test for four
different functions for sample size n = 100: the
proportion of times that H0 was rejected.

σ 2 = 0.1 σ 2 = 0.5

g1 0.98 0.66
g2 0.80 0.48
g3 0.04 0.03
g4 0.02 0.07
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5.2 Comparison with Asymptotic Tests

5.2.1 Local Testing Problem

We first compare the strictly local test proposed by Grégoire and Hamrouni (2002b), based
on the statistic ĝ+(x0) − ĝ−(x0), with the bootstrap-based test. Note that in this case the two
testing procedures are based on the above simple statistic and the only difference between the
two is that the test of Grégoire and Hamrouni (2002b) relies on asymptotic theory, whereas
the bootstrap test relies on bootstrap approximations of the distribution of the test statistic.

The asymptotic law of the test statistic depends on the design density ( f (x) = 1 in our setup)
that we estimated via a kernel density estimate with a Gaussian kernel and a normal reference
type of bandwidth parameter (see for example Silverman, 1986). We simulated samples from
the regression model with functions g1, g2, g3 and g4 and error variance σ 2 = 0.5 for various
sample sizes. The results displayed in Figure 2 present again the proportion of times (out of 100
simulations) that the null hypothesis was rejected. The bandwidth parameter for the estimation
of the size of the jump was chosen via cross-validation based on minimizing the estimated
mean integrated squared error for estimating g on [0, x0] and ]x0, 1]. See also Eq. (4). This
practical choice for the smoothing parameter was also suggested, but not further explored, in
Grégoire and Hamrouni (2002b).

As we can see from Figure 2 the results for the two testing procedures, the asymptotic test
and the bootstrap test, are very comparable. A better performance of the bootstrap-based test
is noticable for small samples. See for example the function g4 with n = 50 (the bottom left
plot).

5.2.2 Global Testing Problem

We now compare the global bootstrap test with the asymptotic tests for the global testing
problem discussed briefly in Section 4. We will show results for the global test of
Hamrouni (1999), for the test based on the three-parameter linear model for the Zks pro-
posed by Müller and Stadtmüller (1999), and for the test of Dubowik and Stadtmüller (2000)
based on the two-parameter linear model for the modified, symmetrized, Zks. We refer to the
latter as the improved linear test.

FIGURE 2 The proportion of times that H0 was rejected for the bootstrap test (dark grey) and for the asymptotic test
proposed by Grégoire and Hamrouni (light grey) for the regression functions g1, g2, g3 and g4 for different sample
sizes and for error variance σ 2 = 0.5.
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In this part of the simulation study, we considered six functions, the functions g1, g2, g3, g4

and g5 defined in Section 5.1, and the function

g6(x) = x + 2I (x > 0.5),

which was also considered in a simulation study in Müller and Stadtmüller (1999).
Recall that the functions g1, g2 and g6 are discontinuous at the point 0.5, whereas the

function g5 has two discontinuity points occurring in 0.2 and 0.5. The functions g3 and g4 are
continuous functions (i.e. H0 is true).

The bootstrap test is fully data-driven. See Section 2.3. The global test proposed by
Hamrouni (1999) requires calculation of the quantity supt |ĝ+(t) − ĝ−(t)|, using a bandwidth
h, and the asymptotic theory establishes the asymptotic law for a normalized version of this
statistic where the normalizing constants also depend on the bandwidth h. Hamrouni (1999)
did not discuss practical choices of this smoothing parameter. In order to provide some com-
parison between the tests, we will, first, present the results for Hamrouni’s test for a range
of (fixed) values of h. The asymptotic tests proposed by Müller and Stadtmüller (1999) and
Dubrowik and Stadtmüller (2000) involve the ‘span parameter’ L. Müller and Stadtmüller
(1999) suggested a so-called ‘plateau method’ for selecting L in practice. It is this method
which we implemented in our simulations.

Figure 3(a)–(f) represents graphically the results of our simulations. On the horizontal axes
the values of h are presented, and the points in the plots indicate the proportion of times that
H0 was rejected for the Hamrouni (1999) test (for each of the fixed h-values). The long-dashed
horizontal line indicates the result for the bootstrap test, whereas the short-dashed horizontal
line represents the result for the asymptotic test of Müller and Stadtmüller (1999) with automatic
choice of the parameter L. The dotted horizontal line shows the results for the improved linear
test of Dubowik and Stadtmüller (2000). For cases for which the null hypothesis is true we also
depict the significance level (0.05) as a solid horizontal line (see Fig. 3(a)–(b)). In Figure 3(a),
the dotted and short-dashed line coincide and therefore only the dotted line is presented.

Figure 3 illustrates the impact of the smoothing parameter h in the test of Hamrouni (1999).
Further, we observe that for functions having one or two discontinuities (see Fig. 3(c)–(f)), the
three different methods work quite well. The difference in performance of the three methods is
most noticable for the cosinus functions g2 and g4. As already mentioned before, this is a rather
difficult example since the cosinus function has many steep gradients that can blur the detection
of the true discontinuity. To get some more inside in the impact of the span size parameter
L in the method of Müller and Stadtmüller (1999) and Dubowik and Stadtmüller (2000) we
calculated for the function g4 (the cosinus function without a jump) the proportion of times H0

was rejected, as a function of L. Figure 4 shows the simulated results, and indicates that for the
continuous cosinus function, the choice of L is very important, and the data-driven choice of L
does not work well for this example. The ‘plateau method’ for selecting L focuses on the region
where L is reasonably stable (i.e. where the proportion stays constant), but apparently for this
example the difficulty is that there are several such regions. A detailed investigation of our sim-
ulation results also revealed that for this example the estimation method of Hamrouni (1999),
even when coming up with a bad estimation of the jump location, still estimates a reasonably
big jump size at that (wrong) location. This can probably be explained by the steep increases
and decreases of the cosinus function, and the identification problem for the jump disconti-
nuity related to it. As a consequence the test too often rejects the null hypothesis. A similar
observation was made from the simulations for the methods of Müller and Stadtmüller (1999)
and Dubowik and Stadtmüller (2000). For the function g2, the cosinus function with the jump,
we noticed that the estimators of the sum of squared jump sizes often overestimates the true
value 4. Again, a possible cause for this might be the rapid changes in the cosinus function.
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FIGURE 3 The proportion of times that H0 was rejected for the bootstrap test (long-dashed horizontal line), for the
Müller and Stadtmüller (1999) asymptotic test (short-dashed horizontal line), for the improved linear test of Dubowik
and Stadtmüller (2000) (dotted horizontal line) and for the global test of Hamrouni (1999) (points indicated by the
character ‘	’). Results for the regressions functions: (a) g3 (no jump); (b) g4 (no jump); (c) g1 (one jump); (d) g2
(one jump); (e) g6 (one jump); and (f) g5 (two jumps).

This ‘overestimation’ of the jumps sizes can also be part of the explanation why these methods
produce higher percentages of rejection for the function g4.

One possible approach to choose the bandwidth parameter h in the global test of
Hamrouni (1999) would be to consider a large enough grid of t values, and for each t value
choosing the cross-validation bandwidth which best estimates the curve g on [0, t] and on
]t, 1] (as in Eq. (4)). Suppose that the maximal quantity supt |ĝ+(t) − ĝ−(t)| is then achieved
at the value t∗. Then choose the bandwidth h which corresponds to the cross-validation
selected bandwidth for that t∗ value. This in fact means we opt for ‘best’ estimation of
supt |ĝ+(t) − ĝ−(t)| ≈ |ĝ+(t∗) − ĝ−(t∗)|. We use this bandwidth in the test statistic as well as
in the normalizing constant. The results for the Hamrouni test with this data-driven choice of
the smoothing parameters are presented in Table III along with the previously obtained results
on the other two tests. This table complements Figure 3.

5.3 Tests for the First Derivative

We now investigate the performance of the bootstrap test for testing whether the first derivative
of the regression function is continuous or not. We consider three functions:

g7(x) = 2x + 1 − 4(x − 0.5)+,
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FIGURE 4 The proportion of times that H0 was rejected for the asymptotic test of Müller and Stadtmüller (1999)
(left panel) and the improved linear test of Dubowik and Stadtmüller (2000) (right panel), as a function of the span
parameter L for the continuous cosinus function g4.

where u+ = max(u, 0),

g8(x) =



10x2 if x ∈ [0, 0.5]
−20

7
x3 + 20

7
if x ∈]0.5, 1]

and

g9(x) = 10x2.

The function g9 and its derivative g(1)
9 is smooth on ]0, 1[, whereas the functions g7 and

g8 have a first derivative that shows a discontinuity at the point 0.5. These three functions
together with a simulated data set of size n = 100 and σ 2 = 0.05 are displayed in Figure 5
(upper panels). In the lower panels, we have represented the true first derivative with an adapted
estimator in case σ 2 = 0.01 and σ 2 = 0.05. These pictures illustrate that estimation of deriva-
tives curves is more difficult than estimation of the regression function itself. That is the
reason why we consider smaller values of the error variance in this part of the simulation
study.

TABLE III Results for the global test for the four different methods: the proportion of times that H0 is
rejected for the six different functions defined above. We use the sample size n = 100 with σ 2 = 0.1.

Müller and Dubowik and Stadtmüller
Hamrouni Stadtmüller improved linear test Bootstrap

No jump g3 0.01 0.19 0.19 0.04
g4 0.35 0.95 0.69 0.02

One jump g1 0.57 0.62 0.87 0.98
g2 0.99 1 0.85 0.80
g6 1 0.94 1 1

Two jumps g5 0.85 0.75 0.95 0.98
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FIGURE 5 Upper panels: the true regression functions (solid curves) with a typical simulated data set of size
n = 100 and with error variance σ 2 = 0.05. Regression functions: (a) g7; (b) g8 and (c) g9. Lower panels: the true
first derivative (solid curve) of the regression function with an estimator for the case σ 2 = 0.01 (dotted curve) and for
the case σ 2 = 0.05 (dashed curve) for the regression function: (d) g7; (e) g8 and (f) g9.

5.3.1 Local Testing Problem

We simulated data of sizes n = 50, n = 100, n = 250 and n = 800 for two different values of
the error variance, σ 2 = 0.01 and σ 2 = 0.05. For each setup we simulated 100 samples, and
used B = 2000 bootstrap replications for approximating the two critical points of the test. We
take α = 0.05. Table IV lists the proportions of times (out of 100) that the null hypothesis (H0:
the first derivative is continuous at the point 0.5) was rejected. Since the functions g7 and g8

show a change in the derivative at 0.5, the rows for these functions indicate the percentage of
rejecting H0 when it is indeed false, and hence give an idea about the power of the test. Note
that this percentage increases with n, indicating that the test is asymptotically efficient (power
tending to 1). For the function g9 the values presented in Table IV indicate the actual level
of the test (which should be compared with the significance level α = 0.05).

TABLE IV Results for the local test: the proportion of times that H0: g(1) is con-
tinuous in the point 0.5 was rejected, for sample sizes n = 50, n = 100, n = 250 and
n = 800 for error variance σ 2 = 0.01 or 0.05.

n = 50 n = 100 n = 250 n = 800

g7 σ 2 = 0.01 0.68 0.75 0.82 0.91
σ 2 = 0.05 0.39 0.53 0.63 0.75

g8 σ 2 = 0.01 0.85 0.90 1 1
σ 2 = 0.05 0.48 0.60 0.69 0.97

g9 σ 2 = 0.01 0.08 0.03 0.03 0.04
σ 2 = 0.05 0.07 0.04 0.04 0.02
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5.3.2 Global Testing Problem

We now investigate the performance of the global test

{
H0: g(1)is continuous on the interval ]0, 1[

H1: g(1)is not continuous on the interval ]0, 1[

for the functions g7, g8 and g9 for sample size n = 100 and error variance σ 2 = 0.01. The
number of bootstrap replications involved in the estimation of the location of the possible
jump point is 500. We also used 500 bootstrap replications for approximating the two critical
points of the test. The results are reported in Table V.

5.4 Real Data Examples

5.4.1 The Prague Temperature Data

In order to illustrate the performance of the global test involving the regression function itself,
we applied the bootstrap test procedure to a real data set. The application concerns 215 aver-
age annual temperatures measured in Prague from 1775 to 1989. This data set was analyzed
by Horváth and Kokoszka (1997) in order to detect climatic changes that took place over a
span of several years or a decade. We used 500 bootstrap replications for the estimation of the
jump point and 500 for estimating the two critical points of the test. The estimated two critical
points of the test are c∗

1(0.025) = 2.39 and c∗
2(0.025) = −2.7, and the observed value of the

test statistic is Tobs = 3.275. Since Tobs > c∗
1(0.025), we reject the null hypothesis that the

regression function is continuous on ]0, 1[. Note that the estimated p-value is equal to 0.0008.
Gijbels and Goderniaux (2004a) analyzed this data set in order to estimate the number and
the locations of the jump discontinuities and found three jump points occurring in 1786.5,
1836.5 and 1942.5. The data set with a local linear estimator adapted to these estimated
change-points is presented in Figure 6. It should be mentioned that the estimated change-
point 1786.5 is very close to the boundary of the observations, and hence estimation of
g between the first observation 1775 and this estimated change-point is not very accurate.
The global bootstrap test detects the jump with the largest jump size i.e. the jump located at
1786.5.

5.4.2 The Motorcycle Data

We applied the global test for testing for discontinuities in the first derivative of the regression
function to the Motorcycle data. This data set consists of 132 observations made on cadavers in

TABLE V Results for the global test:
the proportion of times H0 is rejected for
the functions g7, g8 and g9, for sample
size n = 100 and error variance σ 2 =
0.01.

σ 2 = 0.01

g7 0.63
g8 0.84
g9 0.06
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FIGURE 6 The average annual temperatures in Prague from 1775 to 1989 with a local linear estimator adapted to
estimated discontinuities (solid curve).

simulated motorcycle collisions. The explanatory variable X is the time (in ms) after impact,
whereas the dependent variable Y is the head acceleration (in g) of the test object. This data
set has been analyzed by Speckman (1995) and Gijbels and Goderniaux (2004b).

The two critical points are estimated by the bootstrap procedure. We used 500 bootstrap
replications for the estimation of the (most important) jump point and 500 for estimating
the two critical points of the test. We obtained the following results: c∗

1(0.025) = 10.88
and c∗

2(0.025) = −10.62 which led to a rejection of the null hypothesis of a smooth first
derivative since T1,obs = 91.89. We then concluded that the first derivative of the regression
function is not continuous. Figure 7 depicts the raw data and a local linear fit adapted to
the three estimated change-points, 14.2, 21.1 and 32.4, given by Gijbels and Goderniaux
(2004b).

FIGURE 7 The Motorcycle data (points) with a local linear fit adapted to change-points (solid curve).
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